AP Calculus AB/BC Review

Area of a Region

SOLUTIONS AND SCORING
Question 2

Let \(f \) and \(g \) be the functions defined by \(f(x) = 1 + x + e^{x^2-2x} \) and \(g(x) = x^2 - 6.5x^2 + 6x + 2 \). Let \(R \) and \(S \) be the two regions enclosed by the graphs of \(f \) and \(g \) shown in the figure above.

(a) Find the sum of the areas of regions \(R \) and \(S \).

(b) Region \(S \) is the base of a solid whose cross sections perpendicular to the \(x \)-axis are squares. Find the volume of the solid.

(c) Let \(h \) be the vertical distance between the graphs of \(f \) and \(g \) in region \(S \). Find the rate at which \(h \) changes with respect to \(x \) when \(x = 1.8 \).

\[
\text{Area} = \int_0^2 [g(x) - f(x)] \, dx + \int_A^B [f(x) - g(x)] \, dx
\]

\[
= 0.997427 + 1.006919 = 2.004
\]

\[
\text{Volume} = \int_0^2 [f(x) - g(x)]^2 \, dx = 1.283
\]

\[
h(x) = f(x) - g(x)
\]

\[
h'(x) = f'(x) - g'(x)
\]

\[
h'(1.8) = f'(1.8) - g'(1.8) = -3.812 \text{ (or } -3.811)\]
Let R be the region enclosed by the graph of $f(x) = x^4 - 2.3x^3 + 4$ and the horizontal line $y = 4$, as shown in the figure above.

(a) Find the volume of the solid generated when R is rotated about the horizontal line $y = -2$.

(b) Region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in R. Find the volume of the solid.

(c) The vertical line $x = k$ divides R into two regions with equal areas. Write, but do not solve, an equation involving integral expressions whose solution gives the value k.

(a) $f(x) = 4 \Rightarrow x = 0, 2.3$

Volume = $\pi \int_0^{2.3} \left[(4 + 2)^2 - (f(x) + 2)^2 \right] dx$

= 98.868 (or 98.867)

(b) Volume = $\int_0^{2.3} \frac{1}{2} (4 - f(x))^2 \, dx$

= 3.574 (or 3.573)

(c) $\int_0^k (4 - f(x)) \, dx = \int_0^{2.3} (4 - f(x)) \, dx$
Let $f(x) = 2x^2 - 6x + 4$ and $g(x) = 4\cos\left(\frac{1}{4} \pi x\right)$. Let R be the region bounded by the graphs of f and g, as shown in the figure above.

(a) Find the area of R.

(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y = 4$.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.

(a) Area $= \int_0^2 [g(x) - f(x)] \, dx$

$= \int_0^2 [4\cos\left(\frac{\pi}{4} x\right) - (2x^2 - 6x + 4)] \, dx$

$= \left[4\cdot\frac{4}{\pi}\sin\left(\frac{\pi}{4} x\right) - \left(\frac{2x^3}{3} - 3x^2 + 4x\right)\right]_0^2$

$= \frac{16}{\pi} - \left(\frac{16}{3} - 12 + 8\right) = \frac{16}{\pi} - \frac{4}{3}$

(b) Volume $= \pi \int_0^2 [(4 - f(x))^2 - (4 - g(x))^2] \, dx$

$= \pi \int_0^2 \left[\left(4 - (2x^2 - 6x + 4)\right)^2 - \left(4 - 4\cos\left(\frac{\pi}{4} x\right)\right)^2\right] \, dx$

(c) Volume $= \int_0^2 [g(x) - f(x)]^2 \, dx$

$= \int_0^2 [4\cos\left(\frac{\pi}{4} x\right) - (2x^2 - 6x + 4)]^2 \, dx$
Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and $y = 5 - x$, as shown in the figure above.

(a) Find the area of R.

(b) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.

(c) The horizontal line $y = k$ divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.

\begin{align*}
\ln x &= 5 - x \quad \Rightarrow \quad x = 3.69344
\end{align*}

Therefore, the graphs of $y = \ln x$ and $y = 5 - x$ intersect in the first quadrant at the point $(A, B) = (3.69344, 1.30656)$.

\begin{align*}
(a) \quad \text{Area} &= \int_0^A (5 - y - e^y) \, dy \\
&= 2.986 \text{ (or 2.985)} \\
\text{OR} \\
\text{Area} &= \int_1^A \ln x \, dx + \int_A^5 (5 - x) \, dx \\
&= 2.986 \text{ (or 2.985)}
\end{align*}

\begin{align*}
(b) \quad \text{Volume} &= \int_1^A (\ln x)^2 \, dx + \int_A^5 (5 - x)^2 \, dx \\
\text{(c) } \int_0^B (5 - y - e^y) \, dy &= \frac{1}{2} \cdot 2.986 \text{ (or } \frac{1}{2} \cdot 2.985) \\
\end{align*}
AP® CALCULUS AB
2011 SCORING GUIDELINES

Question 3

Let R be the region in the first quadrant enclosed by the graphs of $f(x) = 8x^3$ and $g(x) = \sin(\pi x)$, as shown in the figure above.

(a) Write an equation for the line tangent to the graph of f at $x = \frac{1}{2}$.

(b) Find the area of R.

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line $y = 1$.

\begin{align*}
\text{(a)} & \quad f\left(\frac{1}{2}\right) = 1 \\
& \quad f'(x) = 24x^2, \text{ so } f\left(\frac{1}{2}\right) = 6 \\
\text{An equation for the tangent line is } y &= 1 + 6\left(x - \frac{1}{2}\right). \\
\text{(b)} & \quad \text{Area } = \int_0^{1/2} (g(x) - f(x)) \, dx \\
& \quad = \int_0^{1/2} \left(\sin(\pi x) - 8x^3\right) \, dx \\
& \quad = \left[-\frac{1}{\pi}\cos(\pi x) - 2x^4\right]_{x=0}^{x=1/2} \\
& \quad = -\frac{1}{8} + \frac{1}{\pi} \\
\text{(c)} & \quad \pi \int_0^{1/2} \left((1 - f(x))^2 - (1 - g(x))^2\right) \, dx \\
& \quad = \pi \int_0^{1/2} \left((1 - 8x^3)^2 - (1 - \sin(\pi x))^2\right) \, dx
\end{align*}
Question 3

The functions f and g are given by $f(x) = \sqrt{x}$ and $g(x) = 6 - x$.

Let R be the region bounded by the x-axis and the graphs of f and g, as shown in the figure above.

(a) Find the area of R.

(b) The region R is the base of a solid. For each y, where $0 \leq y \leq 2$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose base lies in R and whose height is $2y$. Write, but do not evaluate, an integral expression that gives the volume of the solid.

(c) There is a point P on the graph of f at which the line tangent to the graph of f is perpendicular to the graph of g. Find the coordinates of point P.

(a) Area = \[\int_0^4 \sqrt{x} \, dx + \frac{1}{2} \cdot 2 \cdot 2 = \left. \frac{2}{3} x^{3/2} \right|_{x=0}^{x=4} + 2 = \frac{22}{3} \]

(b) $y = \sqrt{x} \Rightarrow x = y^2$

$y = 6 - x \Rightarrow x = 6 - y$

Width = $(6 - y) - y^2$

Volume = \[\int_0^2 2y(6 - y - y^2) \, dy \]

(c) $g'(x) = -1$

Thus a line perpendicular to the graph of g has slope 1.

\[f'(x) = \frac{1}{2\sqrt{x}} \]

\[\frac{1}{2\sqrt{x}} = 1 \Rightarrow x = \frac{1}{4} \]

The point P has coordinates $\left(\frac{1}{4}, \frac{1}{2} \right)$.
Let R be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line $y = 6$, and the y-axis, as shown in the figure above.

(a) Find the area of R.

(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y = 7$.

(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

\[
\text{(a) Area} = \int_0^9 (6 - 2\sqrt{x}) \, dx = \left(6x - \frac{4}{3}x^{3/2}\right)\bigg|_{x=0}^{x=9} = 18
\]

\[
\text{(b) Volume} = \pi \int_0^9 \left((7 - 2\sqrt{x})^2 - (7 - 6)^2\right) \, dx
\]

\[
\text{(c) Solving } y = 2\sqrt{x} \text{ for } x \text{ yields } x = \frac{y^2}{4}.
\]

Each rectangular cross section has area $\left(\frac{3}{4}y^2\right)\left(\frac{y^2}{4}\right) = \frac{3}{16}y^4$.

Volume $= \int_0^6 \frac{3}{16}y^4 \, dy$
Question 1

In the figure above, \(R \) is the shaded region in the first quadrant bounded by the graph of \(y = 4 \ln(3 - x) \), the horizontal line \(y = 6 \), and the vertical line \(x = 2 \).

(a) Find the area of \(R \).
(b) Find the volume of the solid generated when \(R \) is revolved about the horizontal line \(y = 8 \).
(c) The region \(R \) is the base of a solid. For this solid, each cross section perpendicular to the \(x \)-axis is a square. Find the volume of the solid.

\[
\begin{align*}
(a) \ & \int_0^2 (6 - 4 \ln(3 - x)) \, dx = 6.816 \text{ or } 6.817 \\
(b) \ & \pi \int_0^2 \left[(8 - 4 \ln(3 - x))^2 - (8 - 6)^2 \right] \, dx \\
& = 168.179 \text{ or } 168.180 \\
(c) \ & \int_0^2 (6 - 4 \ln(3 - x))^2 \, dx = 26.266 \text{ or } 26.267
\end{align*}
\]
Let R be the region in the first quadrant enclosed by the graphs of $y = 2x$ and $y = x^2$, as shown in the figure above.

(a) Find the area of R.

(b) The region R is the base of a solid. For this solid, at each x the cross section perpendicular to the x-axis has area $A(x) = \sin\left(\frac{\pi}{2}x\right)$. Find the volume of the solid.

(c) Another solid has the same base R. For this solid, the cross sections perpendicular to the y-axis are squares. Write, but do not evaluate, an integral expression for the volume of the solid.

(a) Area $= \int_{0}^{2} (2x - x^2) \, dx$

$= x^2 - \frac{1}{3} x^3 \bigg|_{x=2}^{x=0}$

$= \frac{4}{3}$

(b) Volume $= \int_{0}^{2} \sin\left(\frac{\pi}{2}x\right) \, dx$

$= -\frac{2}{\pi} \cos\left(\frac{\pi}{2}x\right) \bigg|_{x=2}^{x=0}$

$= \frac{4}{\pi}$

(c) Volume $= \int_{0}^{4} \left(\sqrt{y} - \frac{x}{2}\right)^2 \, dy$
Let R be the region bounded by the graphs of $y = \sqrt{x}$ and $y = \frac{x}{2}$, as shown in the figure above.

(a) Find the area of R.

(b) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are squares. Find the volume of this solid.

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line $y = 2$.

(a) Area: $\int_0^4 \left(\sqrt{x} - \frac{x}{2} \right) \, dx = \frac{2}{3} x^{3/2} - \frac{x^2}{4} \bigg|_{x=0}^{x=4} = \frac{4}{3}$

(b) Volume: $\int_0^4 \left(\sqrt{x} - \frac{x}{2} \right)^2 \, dx = \int_0^4 \left(x - \frac{x^{3/2}}{2} + \frac{x^2}{4} \right) \, dx$

$= \frac{x^2}{2} - \frac{2x^{5/2}}{5} + \frac{x^3}{12} \bigg|_{x=0}^{x=4} = \frac{8}{15}$

(c) Volume: $\pi \int_0^4 \left(\left(\frac{2 - x}{2} \right)^2 - (2 - \sqrt{x})^2 \right) \, dx$
AP® CALCULUS AB
2008 SCORING GUIDELINES

Question 1

Let R be the region bounded by the graphs of $y = \sin(\pi x)$ and $y = x^3 - 4x$, as shown in the figure above.

(a) Find the area of R.

(b) The horizontal line $y = -2$ splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below this horizontal line.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

(d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by $h(x) = 3 - x$. Find the volume of water in the pond.

(a) $\sin(\pi x) = x^3 - 4x$ at $x = 0$ and $x = 2$

Area $= \int_0^2 (\sin(\pi x) - (x^3 - 4x)) \, dx = 4$

(b) $x^3 - 4x = -2$ at $r = 0.5391889$ and $s = 1.6751309$

The area of the stated region is $\int_r^s (-2 - (x^3 - 4x)) \, dx$

(c) Volume $= \int_0^2 (\sin(\pi x) - (x^3 - 4x))^2 \, dx = 9.978$

(d) Volume $= \int_0^2 (3 - x)(\sin(\pi x) - (x^3 - 4x)) \, dx = 8.369$ or 8.370
Let \(R \) be the region in the first quadrant bounded by the graphs of \(y = \sqrt{x} \) and \(y = \frac{x}{3} \).

(a) Find the area of \(R \).

(b) Find the volume of the solid generated when \(R \) is rotated about the vertical line \(x = -1 \).

(c) The region \(R \) is the base of a solid. For this solid, the cross sections perpendicular to the \(y \)-axis are squares. Find the volume of this solid.

The graphs of \(y = \sqrt{x} \) and \(y = \frac{x}{3} \) intersect at the points \((0, 0)\) and \((9, 3)\).

(a) \(\int_0^9 \left(\sqrt{x} - \frac{x}{3} \right) \, dx = 4.5 \)

OR

\(\int_0^3 (3y - y^2) \, dy = 4.5 \)

(b) \(\pi \int_0^3 \left((3y + 1)^2 - (y^2 + 1)^2 \right) \, dy \)

\(= \frac{207\pi}{5} \approx 130.061 \) or \(130.062 \)

(c) \(\int_0^3 (3y - y^2)^2 \, dy = 8.1 \)
Let R be the region in the first and second quadrants bounded above by the graph of $y = \frac{20}{1 + x^2}$ and below by the horizontal line $y = 2$.

(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the x-axis.
(c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles. Find the volume of this solid.

\[
\frac{20}{1 + x^2} = 2 \text{ when } x = \pm 3
\]

(a) \[
\text{Area } = \int_{-3}^{3} \left(\frac{20}{1 + x^2} - 2 \right) \, dx = 37.961 \text{ or } 37.962
\]

1: correct limits in an integral in (a), (b), or (c)

2: \[
\begin{align*}
1 & : \text{integrand} \\
1 & : \text{answer}
\end{align*}
\]

(b) \[
\text{Volume } = \pi \int_{-3}^{3} \left(\left(\frac{20}{1 + x^2} \right)^2 - 2^2 \right) \, dx = 1871.190
\]

3: \[
\begin{align*}
2 & : \text{integrand} \\
1 & : \text{answer}
\end{align*}
\]

(c) \[
\begin{align*}
\text{Volume } &= \frac{\pi}{2} \int_{-3}^{3} \left(\frac{1}{2} \left(\frac{20}{1 + x^2} - 2 \right) \right)^2 \, dx \\
&= \frac{\pi}{8} \int_{-3}^{3} \left(\frac{20}{1 + x^2} - 2 \right)^2 \, dx = 174.268
\end{align*}
\]

3: \[
\begin{align*}
2 & : \text{integrand} \\
1 & : \text{answer}
\end{align*}
\]
AP® CALCULUS AB
2007 SCORING GUIDELINES (Form B)

Question 1

Let \(R \) be the region bounded by the graph of \(y = e^{2x-x^2} \) and the horizontal line \(y = 2 \), and let \(S \) be the region bounded by the graph of \(y = e^{2x-x^2} \) and the horizontal lines \(y = 1 \) and \(y = 2 \), as shown above.
(a) Find the area of \(R \).
(b) Find the area of \(S \).
(c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when \(R \) is rotated about the horizontal line \(y = 1 \).

\[e^{2x-x^2} = 2 \text{ when } x = 0.446057, 1.553943 \]

Let \(P = 0.446057 \) and \(Q = 1.553943 \)

(a) Area of \(R = \int_{P}^{Q} (e^{2x-x^2} - 2) \, dx = 0.514 \)

(b) \(e^{2x-x^2} = 1 \text{ when } x = 0, 2 \)

\[
\text{Area of } S = \int_{0}^{2} (e^{2x-x^2} - 1) \, dx - \text{Area of } R
\]

\[
= 2.06016 - \text{Area of } R = 1.546
\]

OR

\[
\int_{0}^{P} (e^{2x-x^2} - 1) \, dx + (Q - P) \cdot 1 + \int_{Q}^{2} (e^{2x-x^2} - 1) \, dx
\]

\[
= 0.219064 + 1.107886 + 0.219064 = 1.546
\]

(c) Volume = \(\pi \int_{P}^{Q} \left(\left(e^{2x-x^2} - 1 \right)^2 - (2 - 1)^2 \right) \, dx \)

3 : \{ \text{ integrand } \}

1 : \text{ limits}

1 : answer

3 : \{ \text{ integrand } \}

1 : limits

1 : answer

3 : \{ \text{ constant and limits } \}