Continuity

-Consider functions that we can draw without lifting our pencil. Then consider "the breaks."

Example-Investigating Continuity

-f is continuous at every point on it's domain $\begin{bmatrix} 0,4 \end{bmatrix}$ except at x=1 and x=2.

Points that are continuous

At
$$x = 0$$

$$\lim_{x \to 0^+} f(x) = f(0)$$

At
$$x = 4$$

$$\lim_{x \to 4^{-}} f(x) = f(4)$$

At
$$0 < c < 4, c \neq 1, 2$$
 $\lim_{x \to c} f(x) = f(c)$

Points that are discontinuous

At
$$x = 1$$
 $\lim_{x \to 1} f(x)$ DNE

At
$$x = 2$$

$$\lim_{x \to 2} = 1, \text{ but } 1 \neq f(1)$$

At
$$c < 0, c > 4$$
 these points are not in the domain

Three part Continuity Test

1)
$$f(c)$$
 exists

2)
$$\lim_{x\to 0} f(x)$$
 is defined

$$3) \lim_{x\to 0} f(x) = f(c)$$

Example

$$y = \frac{x+1}{x^2 - 4x + 3}$$

-Think where the problems could be:

- -Divide by 0
- -Negative roots
- -Asymptotes

$$c = -1$$
 $f(c)$ DNE

-Not the end of the story.

-If a function f is not continuous at a point c, we say \underline{f} is discontinuous at c and c is a point of discontinuity.

Example

-We need to evaluate a 2-sided limit to check for continuity.

$$\lim_{x\to 3^{-}} \operatorname{int}\left(x\right) = 2$$

$$\lim_{x\to 3+} \operatorname{int}\left(x\right) = 3$$

Therefore $\lim_{x\to 3} \operatorname{int}(x)$ DNE

- -When is int(x) continuous?
- -When is it discontinuous?

Discontinuity Types

- -It's not always just enough to say there is a discontinuity we must sometimes also classify it by type.
- -Look at the following graphs and identify what fails to help us identify the type.

B and C are <u>removable</u> discontinuities

D is a jump discontinuity

E is an infinite discontinuity

Removing a Discontinuity

Let
$$f(x) = \frac{x^3 - 7x - 6}{x^2 - 9}$$

- 1) Factor the denominator. What is the domain of f?
- 2) Investigate the graph of f around x = 3 to see that f has a removable discontinuity at x = 3.
- 3) How should f be defined at x = 3 to remove the discontinuity? (TABLE)
- 4) Show that (x-3) is a factor of the numerator of f, and remove all common factors. Now compute the limit as $x \rightarrow 3$ of the reduced form of f.
- 5) Show that the extended function

$$g(x) = \begin{cases} \frac{x^3 - 7x - 6}{x^2 - 9}, & x \neq 3 \\ \frac{10}{3}, & x = 3 \end{cases}$$

is continuous at x=3. The function g is the <u>continuous extension</u> of the original function f to include x=3.

Continuous Functions

A function is <u>continuous on an interval</u> iff it is continuous at every point of the interval.

A <u>continuous function</u> is one that is continuous at every point of it's domain.

-Polynomial functions are continuous at very real number c because $\lim_{x\to c} f(x) = f(c)$

-Rational Functions are continuous at every point of their domains. They have points of discontinuity at the zeroes of their denominators.

-The absolute value function is continuous at every real number.

-Exponentials, logarithms, trigonometric, and radical functions are continuous at every point of their domains.

Properties of Continuous Functions

-If the functions f and g are continuous at x=c , then the following combinations are continuous at x=c

$$f + g$$

$$f-g$$

$$f \bullet g$$

$$\frac{f}{a}$$

Composition of Continuous Functions

If f is continuous at c and g is continuous at f(c), then the composition $f \circ g$ is continuous at c.

Example

Show that
$$y = \left| \frac{x \sin x}{x^2 + 2} \right|$$
 is continuous.

-If we graph $y = \left| \frac{x \sin x}{x^2 + 2} \right|$ it looks like it is continuous at every value of x.

-By letting

$$g(x) = |x|$$
 and $f(x) = \frac{x \sin x}{x^2 + 2}$

- -We know that the absolute value function g is continuous.
- -f is continuous as a quotient
- -So the composition is continuous.

Intermediate Value Theorem

- -Functions that are continuous on intervals are particularly useful.
- -A function is said to have the intermediate value property if it never takes on two values without taking on all the values in between.

-A function y = f(x) that is continuous on a closed interval $\begin{bmatrix} a,b \end{bmatrix}$ takes on every value between f(a) and f(b). In other words if y_0 is between f(a) and f(b), then $y_0 = f(c)$ for some c in $\begin{bmatrix} a,b \end{bmatrix}$.

Example

- -Is any real number exactly one less then it's cube?
- -We know the number must satisfy the equation $x = x^3 1$ or equivalently $x^3 x 1 = 0$.
- -So, we are looking for a zero value on the continuous function $f(x) = x^3 x 1$.
- -The function changes sign between 1 and 2, so there must be a point c between 1 and 2 where f(c) = 0.