Continuity

-Consider functions that we can draw without lifting our pencil. Then consider "the breaks."

Example-Investigating Continuity

- f is continuous at every point on it's domain $[0,4]$ except at $x=1$ and $x=2$.

Points that are continuous

At $x=0 \quad \lim _{x \rightarrow 0^{+}} f(x)=f(0)$

At $x=4$

$$
\lim _{x \rightarrow 4^{-}} f(x)=f(4)
$$

At $0<c<4, c \neq 1,2 \quad \lim _{x \rightarrow c} f(x)=f(c)$

Points that are discontinuous

At $x=1$
$\lim _{x \rightarrow 1} f(x)$ DNE

At $x=2$
$\lim _{x \rightarrow 2}=1$, but $1 \neq f(1)$
At $c<0, c>4$
these points are not in the domain

Three part Continuity Test

1) $f(c)$ exists
2) $\lim _{x \rightarrow 0} f(x)$ is defined
3) $\lim _{x \rightarrow 0} f(x)=f(c)$

Example

$$
y=\frac{x+1}{x^{2}-4 x+3}
$$

-Think where the problems could be:
-Divide by 0
-Negative roots
-Asymptotes
$c=-1 \quad f(c)$ DNE
-Not the end of the story.
-If a function f is not continuous at a point c, we say f is discontinuous at c and c is a point of discontinuity.

Example

-We need to evaluate a 2 -sided limit to check for continuity.
$\lim _{x \rightarrow 3^{-}} \operatorname{int}(x)=2$
$\lim _{x \rightarrow 3+} \operatorname{int}(x)=3$
Therefore $\lim _{x \rightarrow 3} \operatorname{int}(x)$ DNE
-When is int (x) continuous?
-When is it discontinuous?

Discontinuity Types

-It's not always just enough to say there is a discontinuity we must sometimes also classify it by type.
-Look at the following graphs and identify what fails to help us identify the type.

(B) $f(c) D N E$

(c) $f(c) \neq \lim _{x \rightarrow c} f(x)$
B and C are removable discontinuities
D is a jump discontinuity
E is an infinite discontinuity

Removing a Discontinuity

Let $f(x)=\frac{x^{3}-7 x-6}{x^{2}-9}$

1) Factor the denominator. What is the domain of f ?
2) Investigate the graph of f around $x=3$ to see that f has a removable discontinuity at $x=3$.
3) How should f be defined at $x=3$ to remove the discontinuity? (TABLE)
4) Show that $(x-3)$ is a factor of the numerator of f, and remove all common factors. Now compute the limit as $x \rightarrow 3$ of the reduced form of f.
5) Show that the extended function

$$
g(x)= \begin{cases}\frac{x^{3}-7 x-6}{x^{2}-9}, & x \neq 3 \\ \frac{10}{3}, & x=3\end{cases}
$$

is continuous at $x=3$. The function g is the continuous extension of the original function f to include $x=3$.

Continuous Functions

A function is continuous on an interval iff it is continuous at every point of the interval.

A continuous function is one that is continuous at every point of it's domain.
-Polynomial functions are continuous at very real number c because $\lim _{x \rightarrow c} f(x)=f(c)$
-Rational Functions are continuous at every point of their domains. They have points of discontinuity at the zeroes of their denominators.
-The absolute value function is continuous at every real number.
-Exponentials, logarithms, trigonometric, and radical functions are continuous at every point of their domains.

Properties of Continuous Functions

-If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$

1) Sums
$f+g$
2) Differences
$f-g$
3) Products $f \cdot g$
4) Constant Multiples $k \bullet f$
5) Quotients f 9

Composition of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composition $f \circ g$ is continuous at c.

Example

Show that $y=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous.
-If we graph $y=\left|\frac{x \sin x}{x^{2}+2}\right|$ it looks like it is continuous at every value of x.
-By letting

$$
g(x)=|x| \text { and } f(x)=\frac{x \sin x}{x^{2}+2}
$$

-We know that the absolute value function g is continuous.

- f is continuous as a quotient
-So the composition is continuous.

Intermediate Value Theorem

-Functions that are continuous on intervals are particularly useful.
-A function is said to have the intermediate value property if it never takes on two values without taking on all the values in between.

-A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words if y_{0} is between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

Example

-Is any real number exactly one less then it's cube?
-We know the number must satisfy the equation $x=x^{3}-1$ or equivalently $x^{3}-x-1=0$.
-So, we are looking for a zero value on the continuous function $f(x)=x^{3}-x-1$.
-The function changes sign between 1 and 2 , so there must be a point c between 1 and 2 where $f(c)=0$.

